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Abstract

This paper presents a numerical scheme for computer simulation of microstructural evolution of porous polycrys-

talline materials at elevated temperatures. The scheme is then applied to study the sintering behaviour of polycrystalline

solid containing elongate pores. In a previous paper [J. Comput. Phys. 196 (2004) 724], we presented a set of finite ele-

ment formulations to model surface diffusion, grain-boundary diffusion and grain-boundary migration, and their inter-

actions. A range of numerical examples were provided for which analytical solutions are available to verify the finite

element formulations. All these examples had to be simple and contained at most two grains for the analytical solutions

to be possible. In this paper, we complete the numerical scheme and address the numerical issues which have to be

resolved when applying the finite element formulations to material models consisted of many grains and pores. In par-

ticular, we demonstrate how the joining conditions at triple junctions are achieved in the finite element solution and

how the microstructure is updated according to the velocities obtained from the finite element solution. The numerical

scheme is then used to study the problem of anisotropic sintering. A series of computer simulations were carried out to

study microstructural evolution around an elongate pore. The numerical results show that an elongate pore leads to

anisotropic shrinkage and that the shrinkage is always larger in the direction of the longer axis of the pore. The numer-

ical results also show that the shrinkage anisotropy can be controlled by manipulating the ratios between the kinetic

mobilities of surface diffusion, grain-boundary diffusion and grain-boundary migration. Increasing the grain-boundary

migration mobility increases the shrinkage anisotropy. Increasing the surface diffusion mobility, on the other hand,

reduces the shrinkage anisotropy. These numerical findings are not obvious and remain to be verified by future

experiment.
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1. Introduction

At elevated temperatures, the microstructure of a polycrystalline solid evolves to reduce its total free-

energy. Externally applied mechanical force can be a further driving force for such microstructural evolu-

tion. The kinetic mechanisms for the microstructural evolution depend on the material system, grain-size,
temperature and level of the external stresses. Under many practical conditions, solid-state diffusion is a

rate controlling mechanism for matter redistribution. Examples of microstructural evolution controlled

by solid-state diffusion include Coble and Nabarro-Herring creep of engineering materials, cavity and crack

growth in engineering materials and in interconnect lines of integrated circuits, sintering of fine particles

and powder compacts, superplastic deformation of steels and alloys, diffusion bonding of similar or dissim-

ilar materials and etc. In some of these examples, grain-growth also occurs simultaneously which is driven

by the reduction of total grain-boundary energy. A common feature of all these examples is that the grain-

boundaries as well as the free surfaces act as source and sink of matter in the microstructural evolution.
In recent years several different approaches have been developed to model microstructural evolution of

materials. Using the classical finite difference method to solve the kinetic equations is the most natural ap-

proach which has been used widely [2–8]. The Monte-Carlo models (for example [9]) and the phase field

models (for example [10–12]) are another two different approaches. Each of these approaches has its

own advantages and disadvantages. It is inappropriate to review them here, but they all have difficulties

to handle microstructurial evolution if the grain-boundaries act as source and sink of matter. In such a

microstructural evolution, the grains move rigidly relative to each other as matter being either taken away

or deposited onto a grain-boundary. Consequently, the microscopic velocity field of the material is discon-
tinuous across any grain-boundary. Furthermore, the grain-boundary stresses, interfacial tensions and

external loads have to satisfy the local and global equilibrium conditions. The velocity discontinuity and

the global equilibrium conditions are difficult to handle using the finite difference method, the phase field

model or the Monte-Carlo model. Microstructural evolution with a discontinuous velocity field is best han-

dled using a fourth approach – the discrete element method based on a variational principle. Needleman

and Rice [13] developed a variational principle for grain-boundary diffusion and power law creep. Cocks

[14] was the first to develop a discrete finite element scheme using the variational principle for grain-bound-

ary diffusion problem in hexagonal grain structures. Later Pan, Cocks and their co-workers [15–17] devel-
oped finite element formulations for grain-boundary diffusion, surface diffusion and grain-boundary

migration. Sun and Suo [18,19], Bänsch et al. [20], have also developed weak solutions and finite element

schemes for similar problems. However, these finite element formulations used linear shape functions for

the migrating velocity of the interface which is numerically inefficient and has limited their applications

to problems of a few interfaces. Recently, Chen et al [21] developed a grid based numerical scheme using

the variational approach but their method is limited to grain-growth.

In a previous paper [1], we presented a set of finite element formulations using the classical cubic spline

as the shape functions to model surface diffusion, grain-boundary diffusion and grain-boundary migration.
A range of numerical examples were provided for which analytical solutions are available to verify the for-

mulations. The cubic spline elements make it possible to model an interface using as few as three elements

hence opened the door to modelling microstructural evolution using realistic material models consisted of

thousands of grains. Due to space limit in the previous paper, we could not address the numerical issues

which have to be resolved when applying the finite element formulations to material models consisted of

many grains and pores. Neither was it possible to present applications of the numerical scheme to such

problems. This is where the current paper begins. In the current paper, we demonstrate how the joining

conditions at triple junctions are achieved in the finite element solution and how the microstructure is up-
dated according to the velocities obtained from the finite element solution. The numerical scheme is then

used to study the problem of anisotropic sintering. A series of computer simulations were carried out to

study microstructural evolution around an elongate pore. The numerical results show that the elongate
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pore leads to anisotropic shrinkage and that the shrinkage is always larger in the direction of the longer axis

of the pore. The numerical results also show that the shrinkage anisotropy can be controlled by manipu-

lating the ratios between the kinetic mobilities of surface diffusion, grain-boundary diffusion and grain-

boundary migration. Increasing the grain-boundary migration mobility increases the shrinkage anisotropy.

Increasing the surface diffusion mobility, on the other hand, reduces the shrinkage anisotropy. These
numerical findings are not obvious and remain to be verified by future experiment.
2. A brief summary of the variational model and the finite element scheme

Fig. 1 shows schematically the problem addressed in this paper. A two-dimensional representative unit

of a polycrystalline material containing pores is considered. At elevated temperatures the microstructure

evolves to reduce its total potential energy E, which is defined as
E ¼
Z
Cgb

cgb dCþ
Z
Cs

cs dC�
Z
CF

F �U dC; ð1Þ
in which cgb and cs represent the specific energies for the grain-boundaries and free surfaces, respectively

(which can be orientation and location dependant), Cgb represents the grain-boundary network, Cs the free

surfaces, CF the boundary of the representative unit where a distributed force F is applied, and U the dis-

placement of CF with respect to a reference configuration. The grain-boundaries can migrate leading to
grain-growth and reducing the total grain-boundary energy. The network of grain-boundaries and free sur-

faces act as a short-cut for solid-state diffusion as well as source or sink of matter. Matter redistribution

between the grain-boundaries and the free surfaces makes the free surfaces migrate and the pores grow

or shrink. Simultaneously, matter redistribution within the grain-boundaries makes the grains move rela-

tively to each other and causes extra migration of the grain-boundaries in addition to the grain-growth
Fig. 1. A representative unit of a polycrystalline material containing pores.
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mentioned above. If the applied load is small or does not exist, it has been generally accepted that the elastic

stresses quickly diminish as material is being redistributed and the elastic deformation of the grains can be

ignored. In our model the grains are assumed to be rigid. The macroscopic deformation of the material

comes completely from the collection of the rigid motions of the grains, which is often referred to as Coble

creep when pores are not involved.
The diffusive flux, defined as volume of matter flowing along the interface across unit slab thickness of

the interface per unit time, is referred to as jgb for grain-boundary diffusion and js for surface diffusion. The

migrating velocity is referred to as tm for a grain-boundary and ts for a free surface. The matter redistri-

bution and the evolution of the interfaces are governed by a variational principle, that is, among all the

possible diffusive fluxes and migration velocities which satisfy matter conservation, the true fluxes and

velocities make a functional P* stationary,
P� ¼
Z
Cgb

1

2Mgb

j2gb dCþ
Z
Cs

1

2M s

j2s dCþ
Z
Cgb

1

2Mm

t2m dCþ dE
dt

þ
X

kj
X

j
� �

þ
X

kt0
X

t00
� �

þ
X

kt00
X

t00
� �

; ð2Þ
in which Mgb, Ms and Mm represent the mobilities of grain-boundary diffusion, surface diffusion and grain-

boundary migration, respectively. Needleman and Rice [13] developed the original version of this varia-

tional principle. Cocks [14], Suo and Wang [22], Sun et al. [18], Cocks and Gill [23] and Pan et al. [16]

extended it to include surface diffusion, lattice diffusion and grain-boundary migration. Ch�ng and Pan

[1] included the last two Lagrange terms to enforce the continuity of the first and second derivatives of
the migrating velocity across all the finite element nodes except for the triple junctions.

In a previous paper [1], we developed a set of parametric finite element formulations for surface diffu-

sion, grain-boundary diffusion and grain-boundary migration. The classical cubic spline was used to

approximate the interfaces as well as the shape functions for the migrating velocities of the interfaces. Spe-

cial elements were developed to deal with the triple junctions. Using the classical finite element approach,

functional P was discretised as
P� ¼ 1

2
½U �T½A�½U � þ ½F �½U �; ð3Þ
in which [U] is a vector of global unknowns containing (as shown in Fig. 1):

� V
*

and x
*

– the velocities of rigid motion of the grains,

� V
*

junction – velocities of all the triple junctions,

� ts and tm – nodal migration velocities of free surfaces and grain-boundaries,

� cv and dv – parameters for cubic spline representation of the migrating, velocity, defined for each
element,

� js and jgb – diffusive fluxes across at all the mid-points of surface and grain-boundary diffusion elements,

� kj, kt0 ; kt00 – Lagrange multipliers. The first one is defined at all the finite element nodes and triple junc-

tions to enforce flux conservation, the last two are defined at all the finite element nodes except for triple

junctions to enforce continuity of the first and second derivatives of the migrating velocity.

[A] is a generalised global viscosity matrix and [F] is the global force vector.

dP* = 0 leads to
½A�½U � þ ½F � ¼ 0; ð4Þ

from which [U] can be solved using a standard numerical solver. The finite element formulations were ver-

ified using six different testing cases for which analytical solutions are available.
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3. Joining conditions at triple junctions

At a triple junction where three interfaces meet each other, there are three joining conditions:

(a) the diffusive fluxes must be conserved,
(b) the chemical potential must be continuous, and

(c) interfacial tensions must be balanced with each other.

In the variational model, the continuity of diffusive fluxes at any triple junction is satisfied by the first

Lagrange multiplier term (kj) in the functional P* given by Eq. (2). Furthermore, the Lagrange multiplier

kj turns out to be the chemical potential and the fact that the three joining interfaces at a triple junction

share a common Lagrange multiplier satisfies the continuity of the chemical potential. The equilibrium be-

tween the interfacial tensions make the interfaces meet at fixed angles. For example, the equilibrium
between the grain-boundary tension and the free surface tensions as shown in Fig. 2 leads to an equilibrium

dihedral angle w which is given by
cos
w
2

� �
¼

cgb
2cs

ð5Þ
in which cs and cgb are specific energies for the free surface and grain-boundary, respectively. Fig. 3 shows a

slightly complicated example. Two infinitively long grains sit on a single crystal substrate. The interface be-

tween the right grain and the substrate is assigned a higher specific energy than that between the left grain

and the substrate, i.e., csb1
> csb2

. The vertical grain-boundary migrates to the right to reduce the total free

energy of the system. At the steady state, the grain-boundary move to the right with a constant velocity and

the profile of the grain-boundary and triple junction remains unchanged as illustrated in Fig. 3. Mullins
[24,25] showed that the profile of the top triple junction is independent of the migrating velocity and

provided the steady state angle of wB as
wB ¼
cgb
6cs

: ð6Þ
Suo [26] obtained that
wC ¼ p
2
�
csb1 � csb2

cgb
; ð7Þ
while wA is determined from Eq. (5). For numerical schemes which are not based on the variational ap-
proach, the equilibrium condition between the interfacial tensions has to be enforced as part of the bound-

ary conditions. For a recent example, see the work by Zhang et al. [8] in which they carefully implemented

all the joining conditions and criticised the joining conditions used by Pan and Cocks in their earlier work

[27]. The criticisms were valid that Pan and Cocks did not allow the triple junction to rotate. However, the

criticism that there was no continuity of chemical potential at the triple junction in the Pan–Cocks model
Fig. 2. A triple junction where a grain-boundary meets a free surface.



Fig. 3. Thermal grooving by surface diffusion at a migrating grain-boundary with the symbolic definitions for specific energies and the

three angles of our interest, wA, wB and wC.
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was a misunderstanding of their work. Pan and Cocks used a so-called tip curvature which was shared
between the grain-boundary and the free surface at the junction and therefore guaranteed the continuity

of the chemical potential.

For the variational model, Suo [26] pointed out that the equilibrium condition between interfacial ten-

sions is a natural boundary condition which comes out of the variational principle and does not need to be

enforced exactly. This is an analogy to the force boundary conditions in an elasticity problem which is sat-

isfied indirectly by the minimisation of the total potential energy of the system. Suo [26], however, did not

prove the variational argument for the general case where three interfaces meet at arbitrary angles. Con-

sidering three interfaces joining at a junction as shown in Fig. 4 the motion of the triple junction and adjust-
ment of the angles at which the three interfaces meet can be realised by grain-boundary migration and/or

surface diffusion. Surface diffusion can be further coupled to grain-boundary diffusion, but for simplicity we

ignore grain-boundary diffusion in the following derivation. We also drop all the Lagrange terms in Eq. (2)

since they are irrelevant here. Carrying out a variational calculation to P* we have
dP� ¼
Z
free-surface

js
M s

djs dCþ
Z
grain-boundary

tm
Mm

dtm dCþ d
dE
dt

� �
: ð8Þ
Here, d _E represents the virtual change of the free energy rate which can be calculated as
Fig. 4. Equilibrium of interfacial tensions at a triple junction.
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d
dE
dt

� �
¼ d �

Z
free-surface

csjsts dC�
Z
grain-boundary

cgbjgbtm dC� c1 t
*

1 þ c2 t
*

2 þ c3 t
*

3

� �
� V
*

junction

� �

¼ �
Z
free-surface

csjsdts dC�
Z
grain-boundary

cgbjgbdtm dC� c1 t
*

1 þ c2 t
*

2 þ c3 t
*

3

� �
� dV

*

junction; ð9Þ
in which js and jgb are the principal curvatures of the free surface and the grain-boundary, respectively.

The sign conventions for the principal curvature and migrating velocities are such that a reduction in

the interfacial area leads to a negative _E. Matter conservation requires that
ts þ
ojs
oC

¼ 0; ð10Þ
from which we have
Z
free-surface

csjsdts dC ¼
Z
free-surface

csjs � o djsð Þ
oC

� �
dC ¼

Z
free-surface

o csjsð Þ
oC

djs dC: ð11Þ
Combining Eqs. (8), (9) and (11), we obtain
dP� ¼
Z
free-surface

js
M s

� o csjsð Þ
oC

� �
djs dCþ

Z
grain-boundary

tm
Mm

� cgbjgb

� �
dtm dC

� c1 t
*

1 þ c2 t
*

2 þ c3 t
*

3

� �
� dV

*

junction: ð12Þ
Because djs, dtm and dV
*

junction are arbitrary variations, for dP* = 0 we must have
js ¼ M s

o csjsð Þ
oC

; ð13Þ

tm ¼ Mmcgbjgb; ð14Þ
and
c1 t
*

1 þ c2 t
*

2 þ c3 t
*

3 ¼ 0: ð15Þ

Eqs. (13) and (14) are the kinetic equations for surface diffusion and grain-boundary migration. Eq. (15) is
the equilibrium condition of the interfacial tensions at the junction. Therefore, the equilibrium of the inter-

facial tensions, as well as the kinetic equations, comes out of the variation which means that the numerical

solution to the linear simultaneous Eq. (4) is such that the equilibrium conditions at all the triple junctions

are satisfied to the best ability of the available degrees of freedom in the finite element model. This is

demonstrated in the following numerical examples.

Figs. 5 and 6 show our numerical solutions for the thermal grooving process by surface diffusion

as defined in Fig. 2 using two different finite element meshes. The numerical analysis started from an

initially flat top surface. A ratio of cs/cgb = 1 was used in the example and the time is normalised as
�t ¼ M scs

h4
t. Mullin�s steady state solution [25] is also presented in the figures using discrete dots for com-

parison. Fig. 7 shows the evolution of the dihedral angle with respect to the normalised time obtained

using the coarse and fine-mesh, respectively. It can be seen that the finite element solution does in-

deed recover and then maintain the correct dihedral angle of 120� as given by Eq. (5). However,

the time required by the recovery is sensitive to the mesh size. The fine-mesh model recovered the

dihedral angle over three orders of magnitude faster than the coarse-mesh one did. It is then inter-

esting to observe that the overall evolution of the interfaces is not significantly affected by this sen-

sitivity. Figs. 5 and 6 show that both the coarse-mesh solution and the fine-mesh solution agree very
well with the Mullins solutions. This is because the dihedral angle is an issue very local to the triple



Fig. 5. Comparison between a coarse-mesh finite element solution (solid lines) and the steady state solution by Mullins (discrete dots)

for thermal grooving problem by surface diffusion. (a) Finite element mesh and the initial profile and (b) grooved profiles of the

zoomed-in region as shown in (a) using the dashed box at two different times of �t ¼ 1:25� 10�3 and �t ¼ 1:246� 10�2.

Fig. 6. Comparison between a fine-mesh finite element solution (solid lines) and the steady state solution by Mullins (discrete dots) for

thermal grooving problem by surface diffusion. (a) Finite element mesh and the initial profile and (b) grooved profiles of the zoomed-in

region as shown in (a) using the dashed box at two different times of �t ¼ 1:265� 10�4 and �t ¼ 1:251� 10�2.
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junction. This numerical finding is important because it means that one does not have to use extre-

mely fine-meshes to look after the dihedral angle. Fig. 8 presents our numerical solutions of the three

angles wA, wB and wC as defined in Fig. 3 as functions of time. The finite element simulation started

from a vertical grain-boundary and a flat top surface (the dotted lines in Fig. 3). Following param-

eters were used in the example: cgb/cs = 1, csb1
/cs = 1.5, csb2

/cs = 1 and Mmh
2
0=M s ¼ 10:4. Using these

data, Eqs. (5)–(7) predict that wA = 120�, wB = 9.55� and wC = 61.35� which can be compared with

the values approached by the finite element solutions of wA = 120�, wB = 11� and wC = 63�. Fig. 9

shows the evolutions of the two triple junctions (a, b and c, for the top triple junction and d, e

and f for the bottom one). These numerical examples show that the variational principle does indeed

lead to the correct angles at which the interfaces meet and therefore the equilibrium of interfacial

tensions at the triple junctions.



Fig. 7. The dihedral angle as function of time obtained using the fine and coarse finite element meshes, respectively, for the thermal

grooving problem shown in Fig. 2.

Fig. 8. The angles of wA, wB and wC as defined in Fig. 3 as functions of time obtained from the finite element analysis. Also in the

figure, the predictions of Eqs. (5)–(7) are shown as dashed lines.
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4. Updating the microstructure

For simplicity the direct Euler scheme is adopted here for time integration. The finite element analysis

starts from an initial network of grain-boundaries and free surfaces. Each interface is approximated using a

cubic spline containing a set of finite elements. At each time step, the linear simultaneous equation (4) is

constructed and solved providing all the degree of freedoms in [U] as listed in Section 2. Then the entire

network of the interfaces including the positions of the triple junctions is updated according to [U]. Finally,

a new cubic spline is constructed for each interface from the updated profile. This procedure is repeated



Fig. 9. Numerically obtained evolutions of the two triple junctions for the problem defined in Fig. 3. (i) �t ¼ 1:166� 10�6, (ii)
�t ¼ 3:031� 10�4 and (iii) �t ¼ 4:0� 10�1.
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until a required time or characteristic of the microstructural evolution is reached. The rigid motion of the

grains makes the updating procedure less straightforward especially at the triple junctions. These updating

steps are discussed in detail in the following sections.

4.1. Updating the interface profile and triple junction positions

The profile of an interface is represented by a collection of location vectors r
*

i; i ¼ 1; 2; . . . ;m, at a series

of points on the interface as shown in Fig. 10. Because the cubic spline formulations allow one to use very
coarse finite element mesh, m has to be much larger than the total number of finite element nodes on any

interface to represent the interface accurately. Some of these points coincide with the finite element nodes

and the triple junctions. At each time step a location vector is updated according to its velocity V
*

i:
r
*
i t þ Dtð Þ ¼ r

*
i tð Þ þ V

*

i � Dt ð16Þ

in which Dt is a small time step. The velocity V

*

i consists of two parts – the migrating velocity of this point

and the rigid motion of the grain or grains associated with the point. The migrating velocity is always along
the direction of the normal vector, n

*
i, to the interface as shown in Fig. 1. Solving Eq. (4) provides all the

nodal values of the migrating velocities (tm and ts) and the cubic spline parameters (ct and dt) from which

the values of tm and ts can be determined at any point of the interface [1]. The velocity of point i due to the

rigid motion of its associated grain, V
*

rigid;i, can be calculated as



Fig. 10. A collection of location vectors r
*
i to represent an interface.
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V
*

rigid;i ¼ V
*

centre þ x
*� r

*
oi; ð17Þ
in which V
*

centre and x
*
are the translational and rotational velocities of the grain, and r

*
oi is a vector linking

the centre O of the grain to node i under concern. V
*

centre and x
*
are obtained by solving Eq. (4). For a point

on a free surface, its total velocity is then given by
V
*

i ¼ tsn
*
i þ V

*

rigid;i: ð18Þ

Each point on a grain-boundary is associated with two grains on either side of the grain-boundary as shown

in Fig. 11. As matter is being redistributed along the grain-boundary, the two grains move relatively to each

other causing the grain-boundary to reposition itself. This extra migrating velocity of the point is taken as

the average of the two velocities of this point due to the rigid motion of the two grains, respectively, i.e. we

have
V
*

i ¼ tmn
*
i þ V

*1

rigid;i þ V
*2

rigid;i

� ��
2: ð19Þ
The extra migrating velocity of a triple junction due to the rigid motions of grains surrounding the

junction can be calculated in similar way and the total velocity of the triple junction can be calculated

as
before rigid motions after rigid motions 

  

positions of point i due to the rigid motions from Grain 1 and Grain 2 respectively  

new position of point i averaged from the rigid motion of Grain 1 and Grain 2  

initial position of point i between Grain 1 and Grain 2 

Grain 2 

Grain 1

Grain 2 

Grain 1 

Fig. 11. Migration of a grain-boundary due to grain-boundary diffusion.



V
*

i ¼ V
*

triple;i þ
V
*1

rigid;i þ V
*2

rigid;i

� ��
2 surface gb junction;

V
*1

rigid;i þ V
*2

rigid;i þ V
*3

rigid;i

� ��
3 triple gb junction:

8>>><
>>>:

ð20Þ
in which V
*

triple;i is the velocity of the triple junction which is obtained by solving Eq. (4). We have,

however, used a different approximation of the extra velocity taking into account of not only the rigid

motions of the triple junction but also the tangent of the extra grain-boundary migration in the vicinity
of the junction. This is illustrated in Figs. 12 and 13 using a simple example of straight grain-bound-

aries. At each time step, the profiles of the three joining grain-boundaries are updated using Eq. (19)

but without the term of tmn
*

i. This is indicated by GB1, GB2, and GB3 in Fig. 12. The updated three

grain-boundaries do not usually meet at a common point. Each grain-boundary is then extended along

its tangent direction as shown in Fig. 13. The three intersecting points between the three extended

grain-boundaries are determined and the new triple junction is located at the average location of the

three intersecting points. Finally, the location of the triple junction is updated again using its migrating

velocity V
*

triple;i. A triple junction between a free surface and a grain-boundary is updated in the similar
way.
4.2. Reconstructing cubic spline elements and remeshing

In the finite element formulations, a set of cubic spline elements are used to represent each interface. Fig.

14 shows such an element for which we have
xjðfÞ ¼ ½N 1ðfÞ N 2ðfÞ N 3ðfÞ N 4ðfÞ�

x1;j
x2;j
cxj
dxj

2
6664

3
7775; ð21Þ
and
yjðfÞ ¼ ½N 1ðfÞ N 2ðfÞ N 3ðfÞ N 4ðfÞ�

y1;j
y2;j
cyj
dyj

2
6664

3
7775; ð22Þ



updated triple junction 

GB 3 

GB 2 

GB 1 

Fig. 13. Reposition of a triple junction as a consequence of the rigid motion of the grains surrounding the junction.

ζ =−1 S 

x

y

Node 2 

Node 1 

o 
Sej

ζ
ζ = 1

Fig. 14. Symbolic definitions of a cubic spline element.
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in which x1,j, x2,j, y1,j and y2,j are the coordinates of the two nodes; cxj, cyj, d xj and dyj are the cubic spline

parameters; and N1(f), N2(f), N3(f) and N4(f) are the shape functions given by
N 1ðfÞ ¼
1

2
ð1� fÞ;

N 2ðfÞ ¼
1

2
ð1þ fÞ;

N 3ðfÞ ¼ S2
ejðf

2 � 1Þ;
N 4ðfÞ ¼ S3

ej½ð1þ fÞ3 � 4ð1þ fÞ�;

ð23Þ
in which f is a local coordinate defined in Fig. 14 and Sej is the half length of element j.
At each time step, the profile of all the interfaces is updated as discussed in Section 4.1. An updated inter-

face is no longer necessarily a cubic spline. For the finite element analysis to continue, a new cubic spline

has to be constructed for each interface (i.e. to determine cxj, cyj, dxj and dyj for all the elements on an inter-

face). The classical procedure to construct a cubic spline in the form of Eqs. (21)–(23) requires the coordi-

nates of the finite element nodes, the lengths of all the elements 2Sej, and the boundary conditions of dx/df
and dy/df at the two ends of the interface. The coordinates of all the finite element nodes including the tri-

ple junctions are obtained as part of the location vectors ½ r*i� as discussed in Section 4.1. The half elemental

length Sej is calculated from ½ r*i� by numerical integration. Finally, the boundary values of dx/df and dy/df
are calculated from ½ r*i� at the two ends of the interface by numerical differentiation. We have used typically

between 30 and 50 integration points within each element to calculate Sej. Our experience shows that the

accuracy of the boundary values of dx/df and dy/df has a critical influence on the fast recovery of the dihe-

dral angles at triple junctions. It is necessary to numerically calculate dx/df and dy/df at a number of points

on an interface near a triple junction and then linearly extrapolate the numerical results to the triple junc-

tion to obtained the correct boundary values of dx/df and dy/df. It seems tedious to have to reconstruct the

cubic splines at each time step. However, the procedure is automatic and repeating the procedure does not
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pose much extra programming effort after one has done it once. Nevertheless using the cubic spline ele-

ments increases the complexity of the numerical procedure in comparison with the simple linear elements.

However, in a numerical simulation using the linear elements for surface diffusion in particular, most of the

computing time is spent on the oscillation of the nodal positions, while the cubic spline scheme moves the

surface forward with much less oscillation. Our numerical experience showed that the extra complexity of
the cubic spline elements far out balances the numerical instability of the linear elements. It is usual for the

cubic spline elements to achieve a stable numerical solution several order of magnitudes faster than the

linear elements in terms of the computing time.

As most of the problems that we are interested in involves large scale microstructural evolution, frequent

remeshing of the interfaces has to be carried out automatically for the computer simulation to continue. An

element, interface or even entire grain can be deleted from the microstructure if any of them becomes too

short or small. A new element has to be added where an element becomes too long. Fig. 15 shows an actual

example of the remeshing process near a triple junction for a simulation of the co-sintering process of two
particles. The criteria for remeshing (i.e. the definitions for two short or too long) are, however, empirical.

The choice of the allowed minimum and maximum lengths of the elements or interfaces should be such that

further decreasing them would not make any difference to the numerical results. From our numerical expe-

rience, we found that this can be achieved by setting the minimum and maximum elemental lengths at 25%

and 160% of the average length of all the elements, respectively.
Fig. 15. Remeshing of three interfaces joining at a triple junction for the sintering problem. As sintering proceeds, some elements were

added to the grain-boundary and deleted from the free surfaces.
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In order to verify and demonstrate the updating procedures discussed above, we present a case of super-

plastic deformation of initially hexagonal grains as shown in Fig. 16. Grain-boundary diffusion is assumed

as the only rate controlling mechanism in this example. Spingarn and Nix [4] provided an analytical solu-

tion for the problem and obtained the strain rate of the material when a remote stress r is applied in the

vertical direction as
Fig. 16

operat

elemen
_e ¼ 144Mgb

d3
0

exp e

3� exp 2e½ �2
r ð24Þ
in whichMgb is the grain-boundary diffusion mobility, d0 is the initial grain size as defined in Fig. 16(a), and

e is the true strain in the vertical direction.

Figs. 16(b) and (c) show the computer simulated microstructural evolution of the superplastic deforma-

tion using our finite element scheme and updating procedure. In the numerical analysis, all the length scales

are normalised by d0, and the time is normalised as �t ¼ Mgbcgb
d4
0

t. A normalised remote stress of
�r ¼ ðrd0Þ=cgb ¼ 1:5� 106 was applied in the vertical direction. Fig. 17 shows the comparison between

the finite element results and the prediction of Eq. (24) for the true strain in the vertical direction as a func-

tion of the normalised time. Perfect agreement was obtained showing that the finite element formulation
and the updating procedure are both working.
5. A numerical study of anisotropic sintering

In this section, we use the numerical scheme to study an important industrial problem – the anisotropic

deformation of powder compacts during sintering. Sintering is a process in which a fragile powder compact

is fired producing a strong solid. Most of the ceramic products and an increasing number of metal, polymer
and glass components are made by sintering. Recently, Pan has provided a critical review of the existing
. Computer simulated superplastic deformation of an initially hexagonal microstructure. Grain-boundary diffusion is the only

ing mechanism in this example. A remote vertical stress is applied. Each grain-boundary was modelled using three cubic spline

ts. (a) �t ¼ 0, (b) �t ¼ 3:3� 10�9, and (c) �t ¼ 3:752� 10�9.



Fig. 17. Comparison between numerical and analytical solutions of the true strain as a function of time for the superplastic

deformation of a hexagonal structure.
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sintering models at atomic, microscopic and continuum levels [28]. Practical experiences have shown that

shrinkage during sintering is usually anisotropic. Taking the simplest case of sintering a cylindrical sample

as an example, it has been widely observed that the shrinkage in the axial direction differs from that in the
radial direction [29]. Dimensional control is a fundamental issue in ceramic and powder metallurgy (PM)

processing. The anisotropic shrinkage poses a serious problem to the commercial production of ceramic

and PM products. There have been many experimental studies on the anisotropic shrinkage and two factors

appear to be the major causes for the anisotropic behaviour. The first factor is that elongate particles

arrange themselves in a preferred orientation in processes like tape casting, injection moulding or compac-

tion prior to sintering which has been reported by Sanchez [30], Mitomo et al. [31], Huber et al. [32], Zhang

et al. [33], Uematsu et al. [34], Greenwood et al. [35], Raj and Cannon [36], Raj et al. [37] and Shui et al. [38–

40]. Recently, Raj et al. [37] proposed a numerical model for the sintering of elongate particles which pre-
dicts that compact consisted of aligned elongate particles shrink faster in the direction of the shorter axis of

the particles and that the shrinkage anisotropy reduces as sintering progresses. These predictions are in gen-

eral agreement with experimental observations [36]. However, many experimental data have shown that the

shrinkage is anisotropic for non-elongate and even spherical powders. The cause for the anisotropic shrink-

age in these powders is believed to be elongate pores. Roman and Hausner [41], Hausner [42], Exner [43],

Mitkov et al. [44] and Rahaman and De Jonghe [45] have all concluded that oriented pores are the cause for

the anisotropic shrinkage which they observed. The orientation of pores and the extent of pore elongation

are sensitive to the compaction method [43,44], the level of the pressure [46] and even the size distribution of
the particles [41]. Moon and Huppmann [47] on the other hand observed that the shrinkage anisotropy

reduces as sintering enters the final stage. There have been very few modelling efforts to understand the fun-

damentals of the anisotropic shrinkage caused by elongate pores. Jagota et al. [48] considered a powder

compact in which the number of contacts is orientation dependent and developed an anisotropic constitu-

tive law which is suitable for early stage sintering. Olevsky and Skorohod [49] considered a viscous solid

containing elliptical and periodically arranged pores and developed an anisotropic constitutive law which

is suitable for later stage sintering. We are not aware of any model in the literature which describes how the

microstructure evolves around an elongate pore and predicts what factors control the anisotropic shrinkage
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of a powder compact containing elongate pores. Here, we present such a model and attempts to answer

these questions.

5.1. A micro-mechanical model for anisotropic sintering

We consider a two-dimensional solid consisted of hexagonal grains and periodically arranged elongate

pores. Fig. 18 shows a representative unit of the solid containing only one elongate pore. No matter ex-

change is allowed between the representative unit and its surrounding medium. We do not consider smaller

pores in the surrounding medium because such pores would have sintered first leaving the large pore be-

hind. The hexagonal grain network is structurally anisotropic. Cocks and Searle [50] provided an analytical

solution for the remote strain rates of this hexagonal grain network which deforms by grain-boundary

diffusion (i.e. Coble creep). Fig. 19 shows the problem considered by Cocks and Searle [50] who derived

the remote strain rates as
Fig. 18

exchan

four o
_e1 ¼ �_e2 ¼ 36
Mgb

d3
r1 � r2ð Þ ð25Þ
here d is the grain size as defined in Fig. 19. Eq. (25) indicates that the creep response of the hexagonal grain

structure can be treated as isotropic despite that the structure is not symmetric between its horizontal and

vertical directions. Therefore, any anisotropic shrinkage in the numerical model shown in Fig. 18 must be a

consequence of the elongate pore.
. A representative unit of a solid made of hexagonal grains and containing periodically arranged elongate pores. No matter

ge is allowed between the unit and its surrounding medium and periodical boundary conditions of velocity are applied at the

uter boundaries.



σ1

d
σ2σ2 
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Fig. 19. A regular two-dimensional array of hexagonal grains subjected to remote stresses r1 and r2.
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It is convenient to present the numerical results in a non-dimesional format. Here, we normalise all the

length scales by the grain size d as shown in Fig. 18 and use a normalised time
�t ¼ Mgbcs
d4

t: ð26Þ
Furthermore, we present the numerical results using normalised diffusion coefficient Ms/Mgb and grain-

boundary mobility
�Mm ¼ Mmd
2

Mgb

: ð27Þ
In all the cases cs/cgb was set as 3, which is roughly true for many materials. The ratio of Ms/Mgb is varied

from 0.001 to 1000, and �Mm is varied from 0.1 to 1000 which covers the range of these parameters for a

wide range of materials [51].

5.2. Numerical results and discussions

Fig. 20 shows the computer simulated microstructural evolution of the representative unit for �Mm ¼ 100,

Ms/Mgb = 1 and cs/cgb = 3. These material parameters are loosely based on alumina. In Fig. 20(a) the micro-

structure at four different times are superimposed on top of each other so that the overall motion of the

microstructure can be seen clearly. Fig. 20(b) and (c) show the microstructure at two separate times so that

one can see clearly the changes of the microstructure. It can be observed from the figures that the pore area
shrinks significantly accompanied by the shrinkage of the representative unit in both x- and y-directions.

The evolution of the microstructure leads to a neighbour-switching event similar to that described by Ashby

and Verrall [52] for superplastic deformation. Two grains which were originally separated meet each other

and a new boundary is formed between them. Fig. 20(c) shows the microstructure just before such a switch-

ing event at both ends of the elongate pore. Most of our computer simulations were terminated at this

point. However, the case shown in Fig. 20 was continued after the neighbour-switching event which is

shown in Fig. 37 and discussed later.

Fig. 21 shows the linear shrinkage of the representative unit in the x- and y-directions, respectively. The
shrinkage anisotropy can be clearly seen from the figure. The model predicts that the representative unit

shrinks more in the longer axis of the elongate pore which is in general agreement with the continuum

mechanics model by Olevsky and Skorohod [49]. However, the pore spheroidisation predicted by the
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Fig. 20. Computer simulated microstructural evolution of the hexagonal grain structure containing an elongate pore. �Mm ¼ 100, Ms/

Mgb = 1 and cs/cgb = 3. The four microstructures in (a) are shown at times (from outside to inside): �t0 ¼ 0;
�t1 ¼ 9:066� 10�4; �t2 ¼ 1:719� 10�3 and �t3 ¼ 2:41� 10�3.
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continuum mechanics model does not occur in this particular case. Fig. 22 shows the pore shrinkages in its

long and short axes and the pore aspect ratio as functions of time. The micromechanical model predicts that

the pore width shrinks faster than the pore length for this particular set of material parameters. Fig. 23

shows the pore area and the total free energy of the system as functions of time, which simply confirms that

the pore area shrinks continuously driven by the reduction of the total free energy. Mass conservation can
be taken as a measure of accuracy of the numerical model. In the simulation, the total variation of the solid

area is within 0.038%.
Fig. 21. The linear shrinkages of the representative unit in the x- and y-directions as functions of time. �Mm ¼ 100, Ms/Mgb = 1 and cs/
cgb = 3.



Fig. 23. Free energy and pore area as functions of time. �Mm ¼ 100, Ms/Mgb = 1 and cs/cgb = 3.
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5.2.1. Effect of increasing surface diffusivity

Fig. 24 presents a case in which the surface diffusion coefficient is increased by three orders of magnitude

from that of the case shown in Fig. 20. All the other parameters remain to be the same. It can be seen that in

the fast surface diffusion case, the pore does spheroidise as predicted by the continuum mechanics model of

Olevsky and Skorohod [49]. This can also be seen from Fig. 25 which shows pore shrinkage in the two

directions as functions of time. The pore width shrinks faster initially but this is quickly overtaken by
the continuous shrinkage in the length of the pore. The width of the pore actually grows after the initial

stage. Fig. 24 also shows that the microstructural evolution is dominated by the pore spheroidisation

and the representative unit does not shrink very much by the first neighbour-switching event. Fig. 26 shows

the linear shrinkages of the representative unit in the x- and y-directions, respectively, as functions of time.

It can be seen from the figure that the shrinkage is less anisotropic than that for the case shown in Fig. 20

and most of the difference between the shrinkages in the two directions comes from the initial stage. The

shrinkage rate of the representative unit is almost isotropic except for the initial part of the curves. An inter-

esting observation of Figs. 25 and 26 is that the representative unit shrinks continuously in the x-direction
despite that the pore width actually grows. The pore spheroidises by removing matter from the two side

surfaces of the pore and depositing onto the two end surfaces. This pore spheroidisation is not necessarily

accompanied by the swelling of the representative unit overall. The diffusion distance for the spheroidisa-

tion is half of the pore length and the spheroidisation becomes significant only if Ms/Mgb gets large enough.

A series of simulations covering a wide range values of Ms/Mgb were carried out. It was found that the pore

spheroidises if Ms/Mgb > 10 as shown by Fig. 27. The pore area and the total free energy of the system as

functions of time are shown in Fig. 28.

5.2.2. Effect of increasing grain-boundary mobility

Fig. 29 presents a case in which the grain-boundary mobility has been increased by an order of magni-

tude from that for the case shown in Fig. 20. Because of the relatively large grain-boundary mobility, grain-

growth is evident in the microstructural evolution as expected. However, the influence of grain-growth on

the shrinkage anisotropy is rather unexpected. Fig. 30 shows the linear shrinkages of the representative unit

in the x- and y-directions, respectively. It can be seen that the x-dimension of the representative unit re-

mains almost unchanged while the y-dimension (in the direction of the longer axis of the pore) decreases
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Fig. 25. Percentage change of the pore sizes in the x- and y-directions (the left vertical axis) and the pore aspect ratio as functions of

time (the right vertical axis). �Mm ¼ 100, Ms/Mgb = 1000 and cs/cgb = 3.

Fig. 26. The linear shrinkages of the representative unit in the x- and y-directions as functions of time. �Mm ¼ 100, Ms/Mgb = 1000 and

cs/cgb = 3.
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continuously. It seems that the large grain-boundary mobility promotes the shrinkage anisotropy. This

effect of the grain-boundary mobility on the shrinkage anisotropy is so significant that it should be able

to detect the effect in a controlled experiment. We are not aware of such experimental data in the literature

and it would be an interesting future work to verify this numerical finding experimentally. Fig. 31 shows the

change of pore dimensions in the two directions as functions of time. It can be seen that in this case, the

pore shrinks in both directions continuously and in almost equal amount. The strong anisotropic shrinkage

of the representative unit is not accompanied by a strong anisotropic shrinkage of the pore. Fig. 32 shows
the total free energy and the pore areas as functions of time, which is very similar to the previous cases.



Fig. 27. The pore aspect ratio as a function of time for various values of Ms/Mgb. �Mm ¼ 100 and cs/cgb = 3.

Fig. 28. Free energy and pore area as functions of time. �Mm ¼ 100, Ms/Mgb = 1000 and cs/cgb = 3.
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5.2.3. Effect of increasing both surface diffusivity and grain-boundary mobility

Fig. 33 presents a case in which the grain-boundary mobility has been increased by one order of mag-

nitude, respectively, from the case shown in Fig. 24. Fig. 34 shows the linear shrinkage of the representative
unit in the x- and y-directions, respectively. Fig. 35 shows the pore shrinkage and Fig. 36 shows the free

energy and pore area as functions of time. Because of the fast surface diffusion, pore spheroidisation is

again the main feature of the microstructural evolution. The increase of grain-boundary mobility does

not make much difference to the microstructural evolution if one compares Figs. 24 and 33. However,

by comparing Figs. 26 and 34, it can be seen that the fast grain-boundary migration once again makes
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Fig. 29. Computer simulated microstructural evolution of the hexagonal grain structure containing an elongate pore.
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Fig. 30. The linear shrinkages of the representative unit in the x- and y-directions as functions of time. �Mm ¼ 1000,Ms/Mgb = 1 and cs/
cgb = 3.

Fig. 31. Percentage change of the pore sizes in the x- and y-directions (the left vertical axis) and the pore aspect ratio as functions of

time (the right vertical axis). �Mm ¼ 1000, Ms/Mgb = 1 and cs/cgb = 3.
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the sintering more anisotropic. It is apparent from Fig. 34 that the representative unit shrinks at a different

rate in the two different directions. The shrinkage anisotropy in Fig. 26 on the other hand mainly comes

from the initial stage of the process.

5.2.4. Microstructural evolution after neighbour-switching

In all the cases presented in the previous sections, the computer simulations were terminated when a

section of the pore surface between two grain-boundaries becomes too short to continue the numerical
analysis. The disappearance of the small section of the pore surface leads to a neighbour-switching event



Fig. 32. Free energy and pore area as functions of time. �Mm ¼ 1000, Ms/Mgb = 1 and cs/cgb = 3.
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as described by Ashby and Verrall [52] for superplastic deformation. It is possible to allow such event to

occur in the numerical analysis. In some of the simulations the neighbour-switching event was included

and the computer simulation was continued after the topological change of the microstructure. Fig. 37

shows the continued microstructural evolution for the case shown in Fig. 20 (i.e. �Mm ¼ 100, Ms/Mgb = 1

and cs/cgb = 3). The initial structure was highly symmetric about the pore and it is not possible to maintain

the symmetry after a few neighbour-switching events, the microstructure becomes irregular which resembles

a real microstructure. It can be observed from Fig. 37 that the neighbour-switching events make it possible

for the distorted grains as shown in Fig. 20(c) to recover an equal-axis shape so that the elongate pore can
shrink continuously until it disappears.

5.3. Conclusions

The numerical study presented here helps to gain some very interesting insights into the anisotropic

behaviour of polycrystalline solid containing elongate pores. It is shown that the representative unit always

shrinks more in the direction of the longer axis of the pore. This is in general agreement with existing exper-

imental observations by Mitkov et al. [44] and previous models such as that by Olevsky and Skorohod [49].
More interestingly, the computer simulations show that the anisotropic shrinkage of the representative unit

and the shape evolution of the elongate pore follow a complicated relationship. It was shown that the

microstructural evolution and the macroscopic shrinkage are both sensitive to the relative ratios of mobil-

ities for the surface diffusion, the grain-boundary diffusion and the grain-boundary migration. Fast surface

diffusion encourages the pore to spheriodise and reduces the shrinkage anisotropy. Fast grain-boundary

migration, i.e. fast grain-growth, leads to serious anisotropic shrinkage. However, the pore shrinks more

or less isotropically if the grain-boundary migration is fast. The effect of fast surface diffusion is perhaps

common sense and can be expected. The effect of the grain-growth on anisotropic shrinkage is, however,
unexpected and requires further experimental verification. The complicated behaviour of the anisotropic

shrinkage of microstructure is perhaps one of the reasons for some of the confusions in the literature on

this topic. A continuum model would have to take the interplays between the various underlying micro-

scopic processes into account in order to predict the anisotropic shrinkage successfully.
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Fig. 34. The linear shrinkages of the representative unit in the x- and y-directions as functions of time. �Mm ¼ 1000,Ms/Mgb = 1000 and

cs/cgb = 3.

Fig. 35. Percentage change of the pore sizes in the x- and y-directions (the left vertical axis) and the pore aspect ratio as functions of

time (the right vertical axis). �Mm ¼ 1000, Ms/Mgb = 1000 and cs/cgb = 3.
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6. Concluding remark

In conjunction with our previous paper, we have presented a complete numerical scheme which can be

used to simulate microstructural evolution of materials consisted of many grains and pores assuming that
grain-boundary diffusion, surface diffusion and grain-boundary migration are the operating mechanisms

for matter redistribution. An application to anisotropic sintering problem has helped us to gain deep in-

sights into the practical industrial problem. The numerical scheme is being used to study a wide range



Fig. 36. Free energy and pore area as functions of time. �Mm ¼ 1000, Ms/Mgb = 1000 and cs/cgb = 3.

Fig. 37. Computer simulated microstructural evolution of anelongate pore in a hexagonal grain matrix after neighbour-switching

event for �Mm ¼ 100, Ms/Mgb = 1 and cs/cgb = 3.
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of problems. For example we have used similar numerical studies to demonstrate that the critical coordi-

nation number theory for the sintering kinetics of large pores is inappropriate [53]. The variational formu-

lations have been extended to include many more kinetic mechanisms. Elasticity, power law creep, phase

transformation, vapour evaporation and condensation, interface reaction and etc have all been considered

[17,23]. Robust numerical schemes based on the variational formulations have been gradually developed
and perfected providing a powerful tool to study the complicated multi-physics problems involving all these

processes.
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